

Large Area Neutron Detectors

Alexander Barzilov, Paul Sokol Matthew Garrison, Chris Goldman

Acknowledgements:

Jim Beatty
Jim Whitmore
Department of Energy

Penn State University

Large Area Neutron Detectors

Goal: to develop a cost-effective neutron detector design to populate large area of CNCS at SNS (~100 m²)

Motivation: ~3000 commercial LPSDs, cost with mounting racks ~\$7M, our budget is \$2M)

Required performance

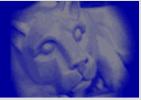
- Resolution 1 in x 1 in
- Count rate up to 10⁵ events/sec (Roadmap: 1cm x 1cm, 2x10⁷ events/sec)

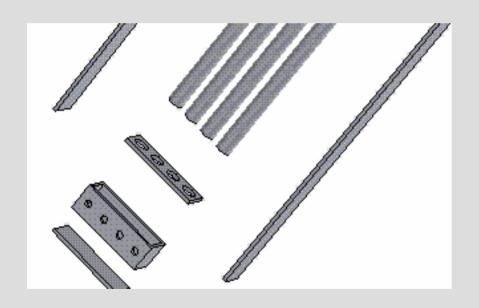
Solution

- Position-sensitive area detectors
- Common gas volume (gas flow techniques)
- Proposed Dec 2001
- Approved CNCS Review Committee Jan 2002
- Started Feb 2003

Large Area Neutron Detectors

Prototype Designs

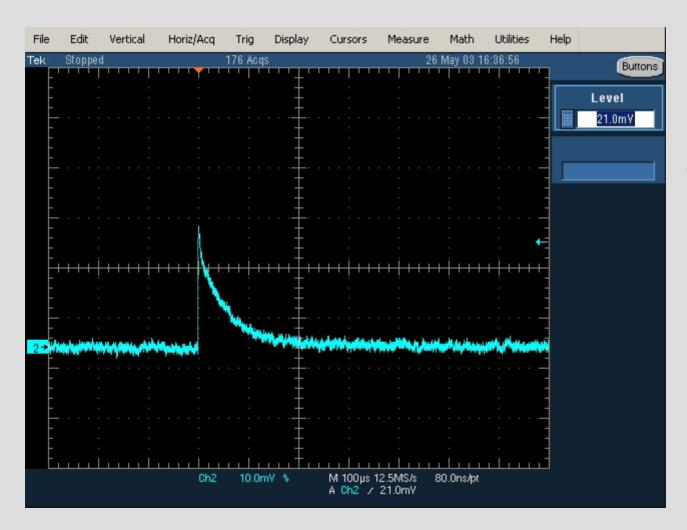

- Banks of Linear Position Sensitive Detectors
- Flat window detectors
- Multi-Pixel Detectors


Methods

- ³He + quenching gas for detector
- Common gas volume
- Option for gas purification (if needed)

Prototype Multi-Tube LPSD

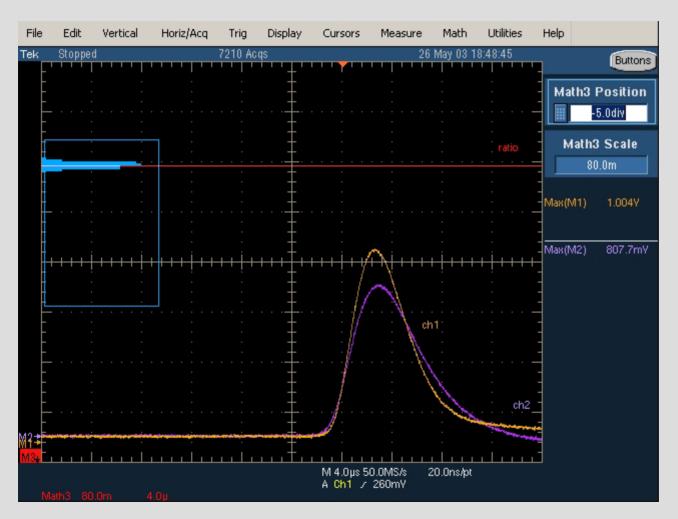
Detector scheme


Prototype LPSD

Prototype Multi-Tube LPSD

Operation parameters

HV: +1200 V


Gas: 3 atm ³He + 0.3 atm propane

Preamplifier signal

Prototype Multi-Tube LPSD

Operation parameters

HV: +1200 V

Gas: 3 atm ³He + 0.3 atm propane

Amplifier signals

Charge division scheme

Position information

Lifetime Considerations

Lifetime limiting factors

- Loss of pressure
- Impurities from outgassing

- Polymerization of quenching gas
- Etching (coating) of wire

Loss of gas charge (leakage)

5% drop in efficiency in 10 years is satisfactory for practical applications.

Parker O-ring Catalogue, p.3-21: Leakage through the seal is $L = 0.7 \text{ F D P Q } (1-\text{S})^2$

For helium under the pressure 6 atm and neoprene O-ring with squeeze 0.5, gas permeability $\sim 6 \times 10^{-8}$ std cc / cm² sec bar, the leak rate of the seal is L $\sim 9.3 \times 10^{-8}$ std cc / sec. For four-tube array, eight O-rings L $\sim 10^{-6}$ std cc / sec. Total tube charge is 24 liter atm, or 24000 std cc. 5% change of this volume is 1200 std cc. Time required for this change is 1.2×10^{9} sec or **38 years**.

Contamination from outgassing

Outgassing level for four-tube prototype (area 1600 cm²):

During 10 years - 1% of impurities (47 Torr). It can be removed from gas mixture by purification.

Cost Considerations

Commercial LPSD

- Individual units
- Sealed design
- Welded, non-repairable
 Baseline plan for CNCS

Detector parameters

- Area: 1 x 0.025 m²
- Cost: ~\$2,000 with mounting
- Cost per area: \$2,000/0.025 or
- $\sim \epsilon \$80,000/m^2$
- ➤ Cost of 1m 1" LPSD ~\$1,700
- ➤ Cost of ³He ~\$125 lit atm
- \triangleright 6 atm, 0.5 lit \sim \$375 or 22% of total cost

Multi-Tube LPSD

- Common gas volume for several tubes
- Modular design, can be disassembled and maintained / repaired

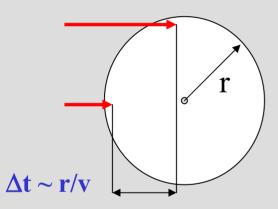
Detector parameters

- Area: 8 x 0.025 m²
- Cost: ~\$4,600 with mounting
- Cost per area: \$4,600/0.2 or ~ε \$23,000/m²
- ➤ Cost of detector parts ~\$1,600
- ➤ Cost of ³He ~\$125 lit atm
- ➤ 6 atm, 4 lit ~ \$3,000 or 65% of total cost

Detector Workshop, 29-30 May 2003, Indiana University, Bloomington, IN

Multi-Tube Detector Array

Detector Workshop, 29-30 May 2003, Indiana University, Bloomington, IN

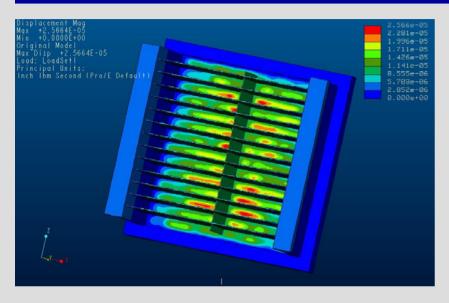

Flat Window Detector

Tube detectors

 \triangleright Timing problems for slow neutrons (v ~ m/s)

because tube is curved

Solution


- > Squashed tubes (PSDs are not available)
- > Flat window detectors

Flat Window Detector

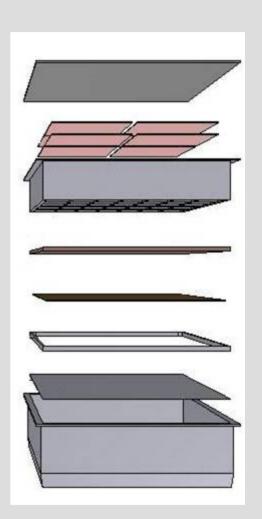
ProMechanica simulation of flat window deformations under pressure

1/16in-thick Aluminum7075 front window and support blades: observed deformation less than one millimeter under the pressure of six atmospheres inside the chamber

Multi-Pixel Detector

Saturation problem:

Can be solved using multi-pixel design


Problem: multiple feedthroughs

 $1 \text{cm}^2 \text{ pixel on } 1 \text{m}^2 \text{ detector} \rightarrow 10,000 \text{ feedthroughs}$ into the high pressure gas chamber

Possibility:

Low outgassing epoxy to make a plate with embedded cathodes and feedthroughs

Detector Development Capabilities

PSU Facilities

Development and Testing Lab

- Gas Filling System
- Gas purification systems
- Outgassing station
- Test source

• Breazeale Reactor

- 1 MW TRIGA
- D₂O Moderator
- $3x10^{13}$ n/cm²sec
- "Available on Demand"

• Electronics

- Physics Department
- Engineering (FPGA's, ASIC's...)

Machine Shops

- Physics, Engineering, ARL
- Nanofabrication Facility
 - Fabrication and characterization

High Energy Physics Group

- Jim Beatty Auger
- Stephane Coutu HEAT
- Steve Hepplemann STAR
- Jim Whitmore HERA

Detector Development at PSU

Conclusion

- Multi-tube cost-efficient LPSD banks are feasible
- High pressure gas detector chambers with thin front windows can be designed
- Multi-pixel chambers with multiple gas tight feedthroughs can be machined

Focused R&D effort:

- Detectors for CNCS
- Exploring multiple possibilities to determine costs
- > CNCS detectors choice will be based on cost effectiveness and reliability
- We have required capabilities to develop and test various detector designs